Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Accurate quantification of machined surface roughness is crucial to the characterization of part performance measures, including aerodynamics and biocompatibility. Given this cruciality, there exists a need for predictive metrology models which can predict the surface roughness before a part leaves a machine to reduce metrologyinduced bottlenecks and improve production planning efficiency under emergent production paradigms, e.g., Industry 4.0. Current predictive metrology approaches in machining generally train machine learning models on all available input features at once. However, this approach yields a high number of free parameters during all states of training, possibly leading to suboptimal prediction results because of the complexity of simultaneously optimizing all parameters at once. In addition, previous machine learning-enabled surface roughness prediction studies have used limited test dataset sizes, which reduces the reliability and robustness of the reported results. To address these limitations, this study proposes a two-stage model training approach based on domainincremental learning, wherein a second stage of training is performed using an expanded input domain. The proposed method is evaluated on a 3,000-element experimentally collected testing dataset of machined H13 tool steel surfaces, where it achieves 16.3 % roughness prediction error compared to the 29.5 % error of the conventional single-stage training approach, indicating the suitability of the two-stage training method for reducing surface roughness prediction error.more » « lessFree, publicly-accessible full text available June 1, 2026
-
During machining, kinetic energy is imparted to a workpiece to remove material. The integrity of the machined surface, which depends on the energy transfer, affects the quality and performance of the product, therefore needs to be quantified. Prior studies have indicated the potential of using machining power, or the power consumption at the tool-chip interface, as a process signature for predicting machined surface integrity. However, direct measurement of machining power is constrained by the availability of special equipment and the associated cost. To address this gap, this paper presents a machine learning-based method for machining power prediction through multi-sensor fusion and sequence-to-sequence translation from acoustic and vibration signals, which represent portions of the in-situ kinetic energy dissipation, to the machining power signal as a process signature. Specifically, a neural network architecture is developed to separately translate the acoustic and vibration signals to corresponding machining power signals. The two predicted power signals are subsequently fused to arrive at a unified power signal prediction. To check for spurious decision logic, the sensor fusion model is interpreted using integrated gradients to reveal temporal regions of the input data which have the most influence on the machining power prediction accuracy of the fusion model. Systematic cutting experiments performed on a lathe using 1018 steel have shown that the developed sensor fusion method for process signature prediction can successfully map machine acoustics to power consumption with 5.6% error, tool vibration to power consumption with 8.2% error, and acoustics and vibration, jointly, to power with 2.5% error. Model parameter interpretation reveals that the vibration signal is more influential on the machining power prediction result than the acoustic signal, but that overall model accuracy is diminished if only the vibration signal is used.more » « less
-
Manufacturers today are increasingly connected as part of a smart and connected community. This transformation offers great potential to deepen their collaborations through resource and knowledge sharing. While the benefits of artificial intelligence (AI) have been increasingly demonstrated for data-driven modeling, data privacy has remained a major concern. Consequently, information embedded in data collected by individual manufacturers is typically siloed within the bounds of the data owners and thus under-utilized. This paper describes an approach to tackling this challenge by federated learning, where each data owner contributes to the creation of a global data model by computing a local update of relevant model parameters based on its own data. The local updates are then aggregated by a central server to train a global model. Since only the model parameters instead of the data are shared across the various data owners, data-privacy is preserved. Evaluation using sensor data for machine condition monitoring has shown that the global model produced by federated learning is more accurate and robust than the local models established by each of the single data owners. The result demonstrates the benefit of secure information sharing for individual manufacturers, especially Small and Mid-Sized Manufacturers (SMMs), for improved sustainable operation.more » « less
An official website of the United States government
